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Many books and articles that discuss musical tunings and scales, whether in the context of history, 

theory, or new music, frame the issue as a dichotomy between just intonation and equal temperament. 

Even when the equal temperament concept is generalized, so that the octave may be divided into a 

number other than the conventional 12 steps, or the tuning made slightly irregular (as in “well-

temperament”), the dichotomy remains woefully inadequate. Just Intonation usually refers to a system 

with at least 3 dimensions – a set of at least three basic intervals (such as the prime intervals 2:1, 3:1, 

5:1, or alternately the intervals 9:8, 10:9, 15:16) is needed in order to be able to construct any interval 

of the system. Meanwhile, an equal temperament can be understood as a 1-dimensional tuning system, 

each of its intervals being constructible by repeatedly stacking the smallest step. 

 

More important than either of these to Western musical history
i
 and notation, however, has been 

meantone temperament, which is 2-dimensional (its basic intervals can be taken to be the octave and 

fifth, or the major second and minor second, for example). While recent decades have seen a 

proliferation of both just intonations and unconventional equal temperaments in both theory and 

practice, systems of intermediate dimensionality have gone virtually ignored. This paper and its sequel 

help to remedy this deficiency, by presenting a variety of 2-dimensional temperaments. Each 

temperament implies a series of scales, each scale a subset of the next in the series – for meantone, a 

segment of this series consists of the pentatonic, diatonic, and chromatic scales. These series of scales 

are depicted in a manner similar to the horagrams of Ervin Wilson. This paper also introduces a new 

criterion for optimally tuning a temperament, in which octaves may be tempered, and the temperaments 

and scales herein are specified in optimal form according to this criterion. 

 

Foreword 

 

This paper springs from a conversation of many years involving Graham 

Breed, David Keenan, Gene Ward Smith, and many other members of the internet’s 

tuning and tuning-math groups.ii It scratches the surface of one aspect of this 

collaboration: the great variety of distinct classes of temperament that we have 

discovered (or often, rediscovered), composed, and performediii in over the years. Also 

important is the mathematical theory that underlies, unifies, and structures this variety.iv 

In this paper, though, I have chosen to avoid all but the simplest mathematical concepts. 

 

Introduction 

 

Ancient musicians in China, Greece, and elsewhere attempted to relate their 

musical intervals with the lengths of string or pipe used to produce them. The ancients 

discerned the musical identities of many simple-integer string-length and pipe-length 

ratios (such as 2:1 – the octave, and 4:3 – the fourth) and deemed many of those ratios 

ideal in terms of tuning. In the sixteenth century, Benedetti became the first to relate 

the sensations of pitch to vibration frequencies. He equated the previously identified 

musical ratios with frequency ratios.v The centuries since have done little to invalidate 
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that equation. And many continue to extol the ideal, exact simple-integer ratios 

between the frequencies of notes concordantvi with one another. Such ratios and the 

tuning systems built from them are referred to collectively as JI (just intonation). 

Unlike JI, temperament has been a central feature in both the practice and 

theory of Western music for half a millennium. What is temperament? The word 

temperament refers to alteration. Musical temperament is the alteration of the exact 

simple-integer ratios at the heart of JI. The alteration is not arbitrary; it is designed to 

achieve certain goals. 

Historically, temperament allowed simple sets of notes, such as the familiar 

diatonic scale, to be tuned so that there were no wolves -- unusually discordant 

realizations of the intervals used as consonances.vii The pure or just tuning of the major 

triad has exact frequency proportions 4:5:6. It is well-known that the white-key or all-

naturals diatonic scale, if tuned so that C major (C-E-G), F major (F-A-C), and G major 

(G-B-D) triads are just, will have discordant, out-of-tune intervals from D to F, and 

worse, from D to A. The ratios of D to F and D to A are exactly 32:27 and 40:27, 

respectively. These ratios are too complex to be heard as pure concordances. 

Proponents of just intonation have suggested introducing an additional version of D, a 

syntonic comma (81:80 or 21.5 centsviii) lower, for use specifically with F and A. This 

allows the two intervals in question to be realized as 6:5 and 3:2, respectively. The 

number of these additional pitches needed increases rapidly in schemes that go beyond 

a single diatonic scale and seek to accommodate more and more keys. But such 

proposals have generally had little impact on musicians and instrument makers due to 

their intricacy and departure from engrained habits.ix They also leave unresolved the 

question of how to tune chords such as C-E-G-A-D and F-A-C-D-G. Historically, 

temperaments slightly altered some or all of the concordant intervals so that the two 

versions of D would coincide exactly, eliminating these difficulties. 

Thus temperament can increase the number of concordant sonorities possible 

with a given number of fixed pitches. Temperament, when implemented in a regular 

manner, also reduces the often bewildering variety of interval sizes in a scale or finite 

tuning system to a manageable few. This simplification is a great aid in notation, 

possibly cognition, and most famously, modulation (the transposition of patterns of 

notes from one pitch level to another). The reduction in the number of distinct pitches 

needed to explore wide harmonic areas is often quite substantial as well. This allows 

for more practical realization on a physical instrument (such as a keyboard or guitar) for 

composition or performance. 

It is often argued that the issue of temperament is only relevant for 

instruments of fixed pitch, such as keyboards and fretted string instruments, while it’s 

irrelevant for music involving instruments of variable pitch, such as the human voice. It 

is true that precise fixed-pitch tuning specifications assume both too much accuracy 

and too little flexibility to be relevant to the practice of vocal, string, or even wind 

ensembles. However, the entire corpus of common-practice Western music is written 

using notation that is compatible with only those classes of temperament associated 

with the diatonic scale, and roughly since Beethoven,x the closed system of 12 notes 

per octave. All the harmonic progressions and melodic resources in these compositions, 

regardless of instrumentation, conform to the structure imposed by the keyboard. 
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Diatonic progressions like C major → A minorxi → D minor → G major → C major, 

though they would necessarily involve pitch shifts or drift of a syntonic comma in strict 

just intonation, are by no means avoided in music for flexible-pitch instruments. In fact 

they’re rarely absent. 

Meanwhile, many other simple harmonic cycles, which would necessitate 

shifts or drift in JI by other ratios, are possible. A few of these have been explored in 

the West since Beethoven – primarily in connection with enharmonicism in the 19th 

century and symmetrical scales, such as the diminished or octatonic scale, in the 20th. 

But most have been neglected in Western music, due to their incompatibility with any 

prevailing temperament. Here is a chord progression which, if realized in 12-equal 

(notated on the left), falls a semitone from the first chord to the last: 

 
If realized in strict JI, with common tones held steady, the progression falls by the ratio 

250:243. But in a temperament where 250:243 becomes a unison, the progression 

returns to its starting point, and its notes form an even 8-note scale (with 1 small and 7 

large steps). Using this scale as the basis for a new staff notation, where the top and 

bottom lines are now an octave apart, the progression can be notated as on the right. 

In the progression below by Graham Breed, most of the four-voice chords are 

meant to approach (aside from inversion) the frequency proportions 4:5:6:7; the rest, 

1/7:1/6:1/5:1/4. If realized in 12-equal, this progression would drift up by a semitone: 

      
In strict JI, though, the drift is only 2401:2400, an interval of less than 1 cent. Clearly a 

performance of this chord cycle by a flexibly-pitched ensemble, holding closely to just 

intonation ideals, is conceivable. Unfortunately, conventional notation is utterly 

incapable of conveying it. But a notation system based on a 10-note scale, rather than 

the diatonic one, is well-suited to the task. Accordingly, Breed suggested a “decimal” 

notation system;xii Joe Monzo implemented the suggestion on a four-line staff and 

created this diagram showing its representation of the “Blackjack” or “Miracle-21” 

scale in 72-equal (a tuning where 2401:2400, as well as 225:224, does indeed vanish): 

 

    
Below is Breed’s chord progression in this notation, where it forms a closed cycle: 

                   
The purpose of this paper is to bring to light a host of alternative 

temperaments (alongside a few familiar ones), and the scales which would be natural to 

notate music written in them. These should not be understood merely as lists of pitches 
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to be employed when tuning an acoustical or electronic instrument. More importantly, 

they should be seen as models for the conception and notation of new music, regardless 

of the instruments or precise tuning strategies employed in its implementation. 

 

The Pythagorean Lattice 

 

To prepare us for considering temperament in more detail, we begin with an 

infinite just intonation (JI) system.xiii Typically, this system is defined by specifying a 

prime limit. The prime limit is the largest prime factorxiv to appear in any of the ratios. 

The lowest possible prime limit is two, but this only allows for a single note and its 

octave transpositions. JI with a prime limit of three is often referred to as Pythagorean 

tuning. The tuning system can be represented geometrically as a lattice.                           

Figure 1 shows a portion of the three-limit 

lattice, with notes represented as circles. Within 

each circle is the corresponding note’s name – 

 the modern nomenclature used here originated 

in the medieval era, when Pythagorean 

tuning was the norm. The subscript, 

 indicating octave register, is a more 

recent development. Figure 2 

denotes the same notes with  

the ratios of their 

frequencies to that of an  

arbitrary tonic 

(corresponding to C4 

in Figure 1).  

Both figures 

courtesy of 

Dave 

Keenan.    

Fig. 1 

 

 

  Starting from any 

note, the result of multiplying 

its frequency by three is 

found by moving one rung to 

the right. So in Figure 2, one rung 

to the right of 1/1 is 3/1, one rung to the 

right of 2/9 is 2/3, and so on. Musicians 

will recognize such motions on Figure 1, 

where they correspond to C4→G5 , B♭1→F3, etc., 

as the result of ascending by the interval of a 

perfect twelfth. Similarly, the result of dividing a 

note’s frequency by 3 is found by moving one rung 
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to the left. So one rung to the left of 1/1 is 1/3, one rung to the left of 12/1 is 4/1, etc. 

(Musicians will recognize such motions on Figure 1 as the result of descending by the 

interval of a perfect twelfth.) Hence the rightward direction will be considered the 

positive direction along the three-axis; the leftward direction will be considered the 

negative direction along the three-axis. Similarly, as one can see in Figure 2, the 

upward direction represents the positive direction along the two-axis; the downward 

direction represents the negative direction along the two-axis. Musicians, referring to 

Figure 1, will recognize these motions as ascents and descents, respectively, by the 

interval of a perfect octave. 

Figure 2 also contains diagonal pitch contours which depict how the pitches 

of the notes (relative to 1/1) vary as one moves around the lattice. (The diagonal lines 

may appear warped but that is only an illusion.) The pitch contours show most clearly 

that a step in the upward direction in the lattice represents a rise of 1200 cents in pitch; 

a step downward, a fall of 1200 cents. The note shown as G4 in Figure 1 and as 3/2 in 

Figure 2 can be seen to be a bit closer to the +1200-cent pitch contour than to the 0-

cent pitch contour. If one imagines a set of pitch contours of arbitrarily fine gradation, 

this note would very nearly lie on the +701.955-cent contour. All the notes with a 

subscript of 4 in Figure 1 lie between the 0-cent and +1200-cent contours in Figure 2. 

Below Figure 2 is a horagram (horagrams will be explained more fully later) of 

Pythagorean tuning, which can be understood as showing in “rolled-up” form the pitch 

contours intersecting the notes falling between the 0- and +1200-cent pitch contours. 

The inner rings correspond to the notes within a narrow range around C4 = 1/1; the 

outer rings correspond to a wider range, well beyond the limits of Figures 1 and 2. 
We can identify each Pythagorean interval with a set of moves in the lattice. 

The interval 531441:524288, known as the Pythagorean comma, occurs for example as 

the interval between the pitches 1024/729 and 729/512, since (729/512):(1024/729) = 

531441:524288. Observe on Figure 2 that, to get from 1024/729 to 729/512 (G♭4 to 

F#4 in Figure 1) in the lattice, one must move 

19 rungs in the negative direction along the two-axis (downwards), and 

12 rungs in the positive direction along the three-axis (to the right) 

(the order of these thirty-one operations does not matter). This set of instructions for 

moving in the lattice is expressed in compact form by the ordered list, or vector,xv 

[-19 12>. 

No matter which pitch in the lattice we start at, moving according to these instructions 

will land you at a pitch one Pythagorean comma higher. 

Arithmetically, the Pythagorean comma’s ratio, 531441:524288, can be 

factored as 

(3·3·3·3·3·3·3·3·3·3·3·3)/(2·2·2·2·2·2·2·2·2·2·2·2·2·2·2·2·2·2·2) = 312/219 = 2-19·312. 

The exponents appearing over the prime numbers in the factorization of the ratio can be 

placed, in order, into a vector. So in vector form, the Pythagorean comma is 

represented again as [-19 12>. For any prime number p, multiplying a ratio by p results 

in adding 1 to the exponent on p in the ratio’s factorization; dividing by p means 

subtracting 1 from that exponent. This is why the geometric and arithmetic vector 

representations of an interval are identical. 
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Every possible pitch or interval in the system can be uniquely identified with 

such a vector of integers. There is a one-to-one correspondence between such vectors 

and three-limit JI ratios. Hence three-limit JI is a 2-dimensional tuning system. In 

general, a JI system has one dimension for each prime number not exceeding the 

system’s prime number limit. 

The vector representation also gives us a way of computing the pitch 

difference, in cents, of the interval. As the pitch contours of Figure 2 illustrate, a rung 

in the positive direction along the two-axis represents an interval of 1200 cents, and a 

rung in the positive direction along the three-axis represents 1901.96 cents. Since the 

pitch contours are parallel and equidistant, one can simply step through the rungs 

needed to traverse an interval and add their pitch differences to obtain the pitch 

difference of that interval. Thus the Pythagorean comma is an interval of 

-19·1200 + 12·1901.96 = 23.5 cents. 

As one can verify by looking carefully at Figure 2, moving by the Pythagorean comma 

takes one, in net, very slightly closer to the next-higher-octave’s pitch contour – if the 

pitch contours were gradated finely enough and the circles drawn small enough, the 

23.5-cent difference could be visually confirmed. A convenient shorthand for writing 

this expression is 

<1200 1901.96|-19 12> = 23.5; 

this is an example of a bracket product operation. The object on the left of the 

expression, which can be written in isolation as 

<1200 1901.96] 

is sometimes referred to as a covector; covectors are a convenient way of representing 

structures like the set of pitch contours in Figure 2.xvi 

 

The Five-Limit JI Lattice 

 

We now add an additional prime – five – and thus an additional dimension to 

our JI universe. Below are two representations of a portion of the five-limit lattice, with 

notes represented as “balls”. Figure 3 gives the conventional names of these pitches 

(with Sagittalxvii symbols denoting syntonic-comma inflections and subscripted 

numerals, as before, denoting octave register). Figure 4 denotes the same pitches with 

the ratios of their frequencies to that of an arbitrary tonic (corresponding to C4 in 

Figure 3). Both figures were contributed by Dave Keenan. 
Just as in Figures 1 and 2, the horizontal direction in these lattices represents 

the three-axis. Starting from any note, the result of multiplying its frequency by three 

(i.e., rising by a perfect twelfth) is found by moving one rung to the right. So one rung 

to the right of 1/1 is 3/1, one rung to the right of 2/15 is 2/5, and so on. Similarly, the 

result of dividing a note’s frequency by 3 (i.e., of descending a perfect twelfth from that 

note) is found by moving one rung to the left. So one rung to the left of 1/1 is 1/3, one 

rung to the left of 12/5 is 4/5, etc. Hence the rightward direction will be again 

considered the positive direction along the three-axis; the leftward direction will be 

considered the negative direction along the three-axis. Similarly, as one can see in 

Figure 4, the upward direction represents the positive direction along the five-axis; the 

downward direction represents the negative direction along the five-axis. 



166 

 

Fig. 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 
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Figure 3 shows that the vertically oriented rungs represent the musical interval of a 

major seventeenth, narrowed relative to its Pythagorean tuning by a syntonic comma. 

Finally, it should be clear that the direction that appears to go “into the page” 

represents the positive direction along the two-axis, and the direction that appears to 

come “out of the page” represents the negative direction along the two-axis – each 

rung representing the interval of a perfect octave. 

As in the Pythagorean case, we can identify each JI interval with a set of 

moves in the lattice. The syntonic comma, 81:80, occurs for example as the interval 

between the notes 10/9 and 9/8, since (9/8):(10/9) = 81:80. Two paths from 10/9 to 9/8 

are shown in Figure 4. To get from 10/9 to 9/8 in the lattice, one must move 

4 rungs in the negative direction along the two-axis (“out of the page”), 

4 rungs in the positive direction along the three-axis (to the right), and 

1 rung in the negative direction along the five-axis (down) 

(the order of these nine operations does not matter). This set of instructions for moving 

in the lattice is expressed in compact form by the vector [-4 4 -1>. No matter which 

note in the lattice we start at, moving according to these instructions will land you at a 

pitch one syntonic comma higher. 

Arithmetically, the syntonic comma’s ratio, 81/80, can be factored as 

(3·3·3·3)/(2·2·2·2·5) = 34/(24·51) = 2-4·34·5-1. 

So in vector form, the syntonic comma is represented again as [-4 4 -1>. To review: 

for any prime number p, multiplying a ratio by p results in adding 1 to the exponent on p 

in the ratio’s prime-factorization; dividing by p means subtracting 1 from that exponent 

– this is why the geometric and arithmetic vector representations of an interval are 

identical. And as before, every possible pitch or interval in the system can be uniquely 

identified with such a vector of integers. There is a one-to-one correspondence 

between such vectors and five-limit JI ratios. Hence five-limit JI is a 3-dimensional 

tuning system.xviii 

The vector representation, as before, gives us a way of computing the pitch 

difference, in cents, of the interval. In JI, a rung in the positive direction along the two-

axis represents an interval of 1200 cents. A rung in the positive direction along the 

three-axis represents 1901.96 cents. And a rung in the positive direction along the 

five-axis represents an interval of 2786.31 cents. Thus the syntonic comma is an 

interval of 

-4·1200 + 4·1901.96 + -1·2786.31 = 21.5 cents. 

Using the bracket product shorthand, this expression can be written as 

<1200 1901.96 2786.31|-4 4 -1> = 21.5. 

Though they are not shown in the figures above, the five-limit lattice should be thought 

of as equipped with a set of pitch contours just as the three-limit lattice can. They form 

a set of parallel, equidistant planes that cut diagonally through the lattice, and can be 

denoted by the covector 

<1200 1901.96 2786.31]. 

 

The Tenney Lattice and Harmonic Distancexix 
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In our considerations so far, the rungs of the just intonation lattice, 

corresponding to the prime numbers, were not presumed to have any particular lengths 

relative to one another. If one imagines the rungs as each having length proportional to 

the corresponding prime number’s interval-size (and figures 1-4 are drawn so that this 

looks plausible), one has the Tenney lattice. 

As we saw at the end of each of the last two sections, the JI lattice provides a 

convenient way to measure the difference in pitch between any two notes in the 

system. Express the interval between the two notes as a vector of integers, 

representing the signed number of rungs along each prime number’s axis required to 

traverse the interval. Then multiply each component of this vector by the corresponding 

component in the covector of the primes’ interval-sizes (in, say, cents), and add the 

products together. If we use the absolute valuesxx of the number of rungs along each 

axis instead of the signed numbers, again multiplying component-by-component with 

the corresponding primes’ interval-sizes (in, say, cents), we are measuring the taxicab 

or Manhattan distance of the interval in the Tenney lattice. This distance function is so 

called because, like a taxicab traversing the streets of Manhattan, one moves through 

the lattice only along the edges, and never takes a “shortcut” that cuts diagonally 

through a block. For example, if the rungs’ lengths are taken to be equal to the 

corresponding intervals in cents, the syntonic comma has a harmonic distance of 

4·1200 + 4·1901.96 + 1·2786.31 = 15194.1 

To prevent the numbers from getting unwieldy, the length of one rung along the two-

axis can be taken to be 1 in this calculation, so we divide each term above by 1200 – or 

equivalently, the primes’ interval-sizes could have been measured in octaves instead of 

cents. The result is 

15194.1/1200 = 12.662 = log2(81·80) 

for the harmonic distance (HD) of the syntonic comma 81/80. 

Harmonic distance is not a measure of interval size. Instead of measuring the 

given interval in cents or octaves – a quantity proportional to log(n/d), where n is the 

interval-ratio’s numerator and d its denominator – one obtains a quantity proportional to 

log(n·d). In 1563, Benedetti proposed that n·d provides a ranking of the simple ratios 

from most consonant to most dissonant, for example giving the ordering 2/1, 3/2, 4/3, 

5/3, 5/4, 6/5, 8/5, 9/5. Log(n·d) gives the same ranking, but agrees with harmonic 

entropyxxi as to the proportions of the differences in concordance among these 

intervals. Beyond the simple ratios, such simple numerical rankings of interval 

concordance break down, but the quantity remains useful as a measure of the musical 

complexity of a JI harmonic progression required to traverse the interval. This is why, 

in Tenney’s terminology, the taxicab distance an interval traverses in his lattice is the 

“Harmonic Distance” of that interval. While expressing intervals as vectors instead of 

ratios can be very useful, the size of the numbers in the intervals’ ratios gives a direct 

indication of the intervals’ harmonic distance. 

 

Temperament 

 

Temperamentxxii then consists in altering the tuning of the prime-number 

intervals so that some of the intervals in the tuning system become perfect unisons 
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(pitch difference of zero). One can visualize this as a reorientation of the pitch contours 

so that, if a pitch contour passes through one note in the lattice, it will also pass through 

others (which is not the case in just intonation). For example, in investigating 

Pythagorean tuning, we found that 729/512 lies on a slightly higher pitch contour than 

1024/729. Now let us imagine that the pitch contours angle slightly differently, so that 

these two notes now lie on the same pitch contour. This must mean that if we move by 

the interval between these two notes, the Pythagorean comma, we will now end up on 

the same pitch contour where we began. In other words, since the Pythagorean comma 

is represented by the vector [-19 12>, moving 19 rungs in the negative direction along 

the two-axis and 12 rungs in the positive direction along the three-axis will now return 

us to the same pitch we started on. Thus temperament introduces some redundancy into 

the lattice representation of pitches. This so-called “vanishing” of the Pythagorean 

comma thus implies that moving 19 rungs in the positive direction along the two-axis is 

equivalent to moving 12 rungs in the positive direction along the three-axis; so moving 

one rung along the three axis is equivalent to moving 19/12 of a rung along the two-

axis. Since adding or subtracting 19/12 to an integer results in a multiple of 1/12, it 

becomes possible to represent all intervals in the tuning as multiples of 1/12 of a rung 

along the two-axis. 

Evidently, we have come upon a system where only one integer is needed to 

specify any interval in the tuning – a 1-dimensional tuning, where all intervals are 

multiples of 1/12 of prime two – namely 12-tone equal temperament. Indeed, the early 

Chinese discovery of 12-equal was predicated on an ideal of three-limit JI. By 

tempering out (or causing to vanish) one interval from three-limit JI, we’ve reduced the 

dimensionality of the system from 2 to 1. We can therefore depict the tuning system 

along a single line as follows: 

 

…E♭3-E3-F3-G♭3-G3-A♭3-A3-B♭3-B3-C4-D♭4-D4-E♭4-E4-F4-G♭4-G4-A♭4-A4… 

 

(where of course G♭ is now synonymous with F#, etc.). Though this depiction fails to 

suggest harmonic proximity the way the Tenney lattice does, it correctly gets across 

the intervallic structure and dimensionality of 12-equal. 

 Another familiar example is meantone tuning: we begin with the 3-

dimensional lattice of five-limit just intonation and adjust the tuning of prime three, 

(sometimes also prime five, and rarely prime two as well), in such a way that the 

syntonic comma vanishes. Keep in mind that this can be visualized as a reorientation of 

the planar pitch contours cutting through the lattice. After this adjustment, if we move 

4 rungs in the negative direction along the two-axis, 

4 rungs in the positive direction along the three-axis, and 

1 rung in the negative direction along the five-axis, 

we end up at the same pitch we started at. Algebraically, we can eliminate this 

redundancy by noting that moving 

1 rung in the positive direction along the five-axis 

is now equivalent to moving 

4 rungs in the negative direction along the two-axis and 

4 rungs in the positive direction along the three-axis 
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(in whatever order). Hence we can replace all motions along the five-axis with 

equivalent motions along the other 2 axes: the two-axis and the three-axis. In this case 

these two motions will each involve an integer number of rungs. We thus end up with a 

2-dimensional system. Only two integers are necessary to specify any interval in the 

tuning: an integer giving the number (and direction) of steps along the two-axis, and an 

integer giving the number (and direction) of steps along the three-axis. Fortuitously, we 

already have exactly such a depiction of a tuning system. Figure 1 can now be re-

interpreted as a depiction of meantone tuning, though in this guise it now fails to give an 

accurate suggestion of harmonic proximity as it did in the Pythagorean case. It does, 

however, correctly get across the intervallic structure and dimensionality of meantone 

tuning. Had we tempered out a different interval, rather than the syntonic comma, from 

5-limit JI, we might not have ended up with a system so similar to Pythagorean tuning, 

but a 2-dimensional system would still have been the result. 

In general, for each independent interval that vanishes, the dimensionality of 

the tuning system decreases by one. Western music had been based on an assumption 

of meantone temperament since the late 15th century. By the turn of the 19th, the 

influence of Bach, Beethoven and others had precipitated a further decrease in 

dimensionality, from two to one. Since in meantone temperament the syntonic comma 

already vanished, one choice of an additional JI interval to temper out would be just as 

good as another if they merely differed by one or more syntonic commas. The relevant 

possibilities for the Western example – intervals separating enharmonic pairs of pitches 

such as F# and G♭ – include the dieses 648:625 and 128:125, the diaschisma 

2048:2025, the schisma 32805:32768, and the Pythagorean comma 531441:524288.xxiii 

As we saw above, it is possible to specify all of meantone tuning with only 2 integers – 

rungs along the two-axis and rungs along the three-axis. Therefore, the vanishing of 

the Pythagorean comma now acts essentially as it did in the three-limit case, resulting 

in the 1-dimensional system of 12-tone equal temperament. 

Under the usual restriction that the two-axis remains just and the other axis 

or axes take all the tempering, these two 12-tone equal tempered systems – the 

Chinese one derived from three-limit JI, and the Western one derived from five-limit JI 

– are tuned identically. But this is not necessarily the only reasonable alternative. One 

can tailor the tempering so as to do, in a sense, the least possible damage to the 

harmonies in the original JI lattice. We will discuss such a procedure in the next section. 

 

TOP Tuning 

 

During a recent bout of illness which provided much time to think, it seemed 

to mexxiv that if only one (independent) interval vanishes, the most natural tuning is the 

one where the vanishing interval’s taxicab route undergoes the tempering uniformly 

along its length. That is, one adjusts the tunings of the rungs involved in traversing the 

interval a fixed amount per unit length, but (assuming the interval is a positive pitch 

difference in JI) with sign opposite to the direction in which they are traversed (so that 

the pitch difference ends up being zero). 

Let’s make this precise for the meantone example. Recall that the syntonic 

comma traverses 4 rungs in the negative direction along the two-axis, 4 rungs in the 
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positive direction along the three-axis, and 1 rung in the negative direction along the 

five-axis. In order to make the syntonic comma vanish without “harmonic waste”, we 

should therefore lengthen the negatives and shorten the positives. The tempering each 

rung undergoes, according to the idea above, will equal the tempering of the comma (its 

entire pitch difference, since it’s being set to zero) times the length of the rung as a 

fraction of the taxicab length of the comma. So the two-axis rungs should be tempered 

wide by 

21.5 cents · log(2)/log(81·80) = 1.7 cents, 

making them 1201.7 cents; the three-axis rungs should be tempered narrow by 

21.5 cents · log(3)/log(81·80) = 2.7 cents, 

making them 1899.26 cents; and the five-axis rungs should be tempered wide by 

21.5 cents · log(5)/log(81·80) = 3.94 cents, 

making them 2790.26 cents. Verifying that the syntonic comma vanishes, we repeat our 

earlier bracket product calculation with the covector corresponding to the new rungs 

<1201.7 1899.26 2790.26|-4 4 -1> = 0.xxv 

  I then realized that this method of tuning was optimal in a certain sense. Most 

models of discordance predict that the simplest ratios are most sensitive to mistuning, 

more complex ratios are less sensitive to mistuning, and still more complex ratios are 

essentially insensitive to mistuning (as they are not local minima of discordance in the 

first place). To evaluate the damage to concordance caused by the mistunings in a 

temperament, then, it makes sense to scale them so that mistuning a simple ratio by a 

given amount (in cents) corresponds to more damage than mistuning a complex ratio by 

that same amount. A straightforward way of doing this is to divide each mistuning by 

the Harmonic Distance of the JI interval mistuned. Clearly we have tempered out the 

comma so that the maximum damage done to the three prime-number intervals is 

minimized. Any other way of distributing the comma among the primes, if it decreased 

the damage on one of them, would have to increase the damage to another, thus 

increasing the maximum. 

However, the primes are not the only intervals of interest. Let’s examine the 

meantone tuning derived above in terms of the damage it does to the five-prime-limit 

ratios with Harmonic Distance less than 6: 

 
 

IntervalRatio   Tmprmnt.  |Mistuning|  HD=log2(n*d) |Mistuning|/HD 

2/1........1201.70....1.70..........1...............1.70 

3/1........1899.26....2.69..........1.58............1.70 

4/1........2403.40....3.40..........2...............1.70 

5/1........2790.26....3.94..........2.32............1.70 

3/2.........697.56....4.39..........2.58............1.70 

6/1........3100.96....0.99..........2.58............0.38 

8/1........3605.10....5.10..........3...............1.70 

9/1........3798.53....5.38..........3.17............1.70 
5/1........2790.26....3.94..........2.32............1.70 

10/1.......3991.96....5.64..........3.32............1.70 

4/3.........504.13....6.09..........3.58............1.70 

12/1.......4302.66....0.70..........3.58............0.20 

5/3.........890.99....6.64..........3.91............1.70 

15/1.......4689.52....1.25..........3.91............0.32 

16/1.......4806.79....6.79..........4...............1.70 

9/2........2596.83....7.08..........4.17............1.70 
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18/1.......5000.22....3.69..........4.17............0.88 

5/4.........386.86....0.55..........4.32............0.13 

20/1.......5193.65....7.34..........4.32............1.70 

8/3........1705.83....7.79..........4.58............1.70 

24/1.......5504.36....2.40..........4.58............0.52 

25/1.......5580.52....7.89..........4.64............1.70 

27/1.......5697.79....8.08..........4.75............1.70 

6/5.........310.70....4.94..........4.91............1.01 

10/3.......2092.69....8.33..........4.91............1.70 

15/2.......3487.82....0.45..........4.91............0.09 

30/1.......5891.22....2.95..........4.91............0.60 

32/1.......6008.49....8.49..........5...............1.70 

9/4........1395.13....8.78..........5.17............1.70 

36/1.......6201.92....1.99..........5.17............0.38 

8/5.........814.84....1.15..........5.32............0.22 

40/1.......6395.35....9.04..........5.32............1.70 

9/5........1008.27....9.33..........5.49............1.70 

45/1.......6588.78....1.44..........5.49............0.26 

16/3.......2907.53....9.49..........5.58............1.70 

48/1.......6706.06....4.10..........5.58............0.73 

25/2.......4378.82....6.19..........5.64............1.10 

50/1.......6782.21....9.59..........5.64............1.70 

27/2.......4496.09....9.77..........5.75............1.70 

54/1.......6899.49....6.38..........5.75............1.11 

12/5.......1512.40....3.24..........5.91............0.55 

15/4.......2286.12....2.15..........5.91............0.36 

20/3.......3294.39...10.03..........5.91............1.70 

60/1.......7092.92....4.65..........5.91............0.79 

 

 

The largest amount of damage done to any interval here is 1.7 by this measure, the 

same as the damage to the prime-number intervals. This would remain true no matter 

how complex the interval ratios we considered susceptible to ‘damage’.xxvi Our tuning 

strategy has minimized the maximum damage over all intervals in the lattice. This is a 

very convenient property to have in a temperament optimization as it requires only the 

specification of a prime limit and not a more restrictive odd limit, integer limit, or other 

putative set of ‘concordant’ intervals.xxvii. The tuning would also remain optimal if we 

restricted our attention to intervals no larger than an octave (shown in boldface above), 

for example. 

Thus the general rule for Tenney-optimal temperament of a single comma is 

as follows. Make sure the comma, n/d is a positive pitch difference in JI. i.e., n is 

greater than d. Next, consider each of the prime numbers in succession. If the prime p 

has a positive sign in the comma’s vector representation – that is, if it appears as a 

factor of n – then temper that prime narrow by 

cents(n/d) · log(p)/log(n·d). 

If the prime p has a negative sign in the comma’s vector representation – that is, if it 

appears as a factor of the d – then temper that prime wide by this same amount. If the 

comma does not involve prime p at all, we will adopt the convention that prime p 

remains just.xxviii The maximum damage of any interval, which is minimized by this 

temperament strategy, is then 

cents(n/d) · log(2)/log(n·d) 

or 

1200 · log(n/d)/log(n·d). 
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We can apply this strategy to the Chinese 12-equal example because only 

one comma, the Pythagorean comma, is tempered out there. The Pythagorean comma 

traverses 19 rungs in the negative direction along the two-axis and 12 rungs in the 

positive direction along the three-axis. It is a pitch difference in JI of 

<1200 1901.96|-19 12> = 23.5 cents. 

So we temper the two-axis rungs wide by 

23.5 cents · log(2)/log(531441·524288) = 0.62 cents, 

making them 1200.62 cents, and the three-axis rungs narrow by 

23.5 cents · log(3)/log(531441·524288) = 0.98 cents 

making them 1900.98 cents. Observe that the Pythagorean comma vanishes: 

<1200.62 1900.98|-19 12> = 0.xxix 

We can also verify that this is an equal tuning as expected: 

1200.62/12 = 100.05 = 1900.98/19. 

This idea can be generalized to a method of optimal tuning for any class of 

temperament (no matter how many commas vanish). This is now known as TOP tuning – 

“Tenney OPtimal”.xxx Another interpretation of this acronym is “Tempered Octaves, 

Please”, as almost all the types of optimal tuning my colleagues and I had considered 

until this year had pure octaves. The precise tuning details, though, should not be 

considered essential – all the temperaments in this paper can be tuned in various ways 

with pure octaves, irregular or “well-” tempering, or other with features that deviate 

from the TOP model, according to the needs and desires of the musician. 

 

Linear Temperaments, Moment-Of-Symmetry scales, and Horagrams? 

 

Earlier, we found that any pitch or interval in meantone tuning can be 

uniquely specified using two integers, representing numbers of rungs along the two-

axis and three-axis, respectively. So we will say that the meantone system can be 

generated by its approximations of the 2:1 and 3:1 ratios, or that these approximate 

ratios form one possible pair of generators of meantone tuning. Tuning systems are 

usually constructed so as to repeat themselves at intervals of ~ (approximately) 2:1 

(the “octave”). So the ~2:1 generator of meantone functions as the period of the 

system. 

In musical cultures whose scales repeat periodically at the ~2:1, such as the 

West, pitches separated by ~2:1 are treated as “equivalent”, typically having the same 

name. The study of tuning systems is often undertaken with equivalence classes of 

pitches, rather than pitches themselves, as the fundamental entities. So meantone’s 

~3:1 generator, or equivalently 3:2 (the “fifth”) or 3:4 (the “fourth”), can often be 

regarded simply as the generator of meantone. In this guise, meantone temperament, 

though 2-dimensional, has been referred to as a “linear temperament” by Erv Wilson 

and others. 

It’s not always the case, though, that a 2-dimensional temperament can be 

generated by a pair of intervals such that one of them is ~2:1. We saw that 12-tone 

equal temperament requires a generator that is one-twelfth of an octave, and this sort 

of thing can happen with two-dimensional temperaments as well. Specifically, if a 

‘comma’ that vanishes in the temperament can be expressed as the difference between 
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some number of “octaves” and a stack of identical JI intervals, the temperament will 

contain fraction-of-octave intervals that cannot be expressed using a whole octave as 

one of the generators. For example, the diaschisma, 2048:2025 (in vector notation, [11 

-4 -2>), can be expressed as the difference between an octave, 2/1 ([1 0 0>) and a 

stack of two identical “just augmented fourths”, each 45:32 ([-5 2 1>). If the diaschisma 

vanishes, two “augmented fourths” will become equal to one “octave”. The “octave” 

cannot, therefore, itself be a generator of the resulting temperament, but a “half-

octave” can. With octave-repetition assumed, the half-octave becomes the period. The 

dieses 128:125 ([7 0 -3>) and 648:625 ([3 4 -4>), when tempered out, can similarly be 

seen to result in “third-octave” and “quarter-octave” periods, respectively. Such 

fractions-of-octave periods, though, are clearly not intervals of equivalence, either 

psychoacoustically or culturally. So the applicability of the term “linear temperament” 

to all 2-dimensional temperaments is dubious. 

Once the period and generator of a 2-dimensional temperament are identified, 

putative scales can be created in a straightforward way. Starting with one note per 

period, the generator is used to add more and more pitches to the scale. At certain 

points in this process, the scale has only two different step sizes. At these points, 

traversing any given number of consecutive steps in the scale can result in at most two 

specific sizes of interval, regardless of where one begins in the scale. The number of 

sizes will be exactly two except where the interval is the period or a multiple thereof 

(in which case there’s only one size). In cases where the period is an octave, these 

points in the process have been referred to as Moments-Of-Symmetry, or MOS scales, 

by Erv Wilson and others. They have also been called Myhill scales. A more general 

term, communicated to me by the late John Clough, that includes the cases where the 

octave is a multiple number of periods is Distributionally Even Scale (DES). 

Pitches in scales that repeat every (tempered) octave can be grouped 

together into “equivalence classes”. We’ll use the term “pitch class” to indicate a pitch 

along with all its (tempered) octave-transpositions. Using this idea, we can concisely 

display DESs by employing a type of diagram called a “horagram” by Erv Wilson. He 

uses them to depict MOS scales but I will take the liberty of applying the term to this 

more general case. Take a look now at the horagrams which comprise the second half 

of this paper. Let’s use the TOP meantone horagram as an example. The horagram 

depicts pitch classes as rays, and intervals as angles, with a (tempered) octave 

represented, like an hour on a clock, as a full circle. The diagram begins with one pitch 

class per period shown as a ray or rays emanating from the center of the diagram. In 

the TOP meantone case, this is a single vertical ray, representing 0 cents, the tempered 

octave of 1201.7 cents (explicitly indicated), and all integer multiples thereof. Then the 

process of repeatedly applying the generator to add more pitch classes occurs. In this 

case, the generator is the tempered fourth of 504.13 cents.  

Unlike Wilson, in whose horagrams the generator is always applied in the 

same direction, I apply the generator alternately upward from one end of the chain(s) 

and downward from the other. The direction of the first generator is arbitrary – I 

happened to apply it downward in this case. So the second pitch generated within the 

frame of an octave is obtained by applying the generator downward from the first pitch 

class: 1201.7 - 504.13 = 697.57 cents. The third pitch obtained within the octave is 
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obtained by applying the generator upward from the first pitch class: 0 + 504.13 = 

504.13 cents. The fourth pitch class is obtained by applying the generator downward 

from the second pitch class: 697.57 - 504.13 = 193.44 cents. The fifth pitch class is 

obtained by applying the generator upward from the third pitch class: 504.13 + 504.13 

= 1008.26 cents. Each time a DES is formed, a concentric ring is drawn, the number of 

notes per octave in the DES is printed, in italics, in the ring near the top,xxxi and each 

step is labeled with its size in cents. The process continues with the rays emanating 

from the outside of the ring. Successive rings get drawn further and further from the 

center. 

TOP meantone shows 5- and 7-note rings, corresponding to the familiar 

pentatonic and diatonic scales. If the 0/1201.7-cent pitch class is assigned to the note 

D, the rest of the 7-note ring will correspond to the notes E, F, G, A, B, and C. A chain 

of 7 generators produces the small interval of 76.19 cents, which first shows itself in 

the 12-note (“chromatic”) ring. This interval is also the difference between the two 

step sizes in the 7-note ring. Raising a note by this interval appends a “sharp” (＃) to 

its name, while a like lowering appends a “flat” (♭). With these symbols, any meantone 

pitch class can be assigned a unique name.  

 

Table 1 
Vanishing Interval’s Ratio Van. Intvl. 

Vector 

V. I. 

cents 

Horagram 

name 

TOP 

per. 

TOP 

gen. 

Map. 

2 

Mapp. 

of 3 

Mapp. 

of 5 

Cmplx. TOP 

Dmg. 

TWO EXOTEMPERAMENTS:           

                  15:16 [4 -1 -1> 111.7 Father 1185.9 447.4 1,0 2,-1 2,1 2.15 14.13 

                  27:25 [0 3 -2> 133.2 Bug 1200.0 260.3 1,0 2,-2 3,-3 2.55 14.18 

         MAIN SEQUENCE:           

                  25:24 [-3 -1 2> 70.7 Dicot 1207.66 353.22 1,0 1,2 2,1 2.51 7.66 

                  81:80 [-4 4 -1> 21.5 Meantone 1201.70 504.13 1,0 2,-1 4,-4 3.44 1.70 

                128:125 [7 0 -3> 41.1 Augmented 399.02 93.15 3,0 5,-1 7,0 3.79 2.94 

                135:128 [-7 3 1> 92.2 Mavila 1206.55 685.03 1,0 1,1 4,-3 3.83 6.55 

                250:243 [1 -5 3> 49.2 Porcupine 1196.91 1034.59 1,0 -1,3 -2,5 4.32 3.09 

                256:243 [8 -5 0> 90.2 Blackwood 238.87 158.78 5,0 8,0 11,1 4.33 5.67 

                648:625 [3 4 -4> 62.6 Dimipent 299.16 197.49 4,0 7,-1 10,-1 5.06 3.36 

              2048:2025 [11 -4 -2> 19.6 Srutal 599.56 494.86 2,0 4,-1 3,2 5.97 0.89 

              3125:3072 [-10 -1 5> 29.6 Magic 1201.28 380.80 1,0 0,5 2,1 6.30 1.28 

              6561:6250 [-1 8 -5> 84.1 Ripple 1203.32 101.99 1,0 2,-5 3,-8 6.87 3.32 

            15625:15552 [-6 -5 6> 8.1 Hanson 1200.29 317.07 1,0 0,6 1,5 7.57 0.29 

            16875:16384 [-14 3 4> 51.1 Negripent 1201.82 1075.68 1,0 -2,4 5,-3 7.62 1.82 

            20000:19683 [5 -9 4> 27.7 Tetracot 1199.03 176.11 1,0 1,4 1,9 7.76 0.97 

            20480:19683 [12 -9 1> 68.7 Superpyth 1197.60 708.17 1,0 1,1 -3,9 7.77 2.40 

            32805:32768 [-15 8 1> 2.0 Helmholtz 1200.07 701.79 1,0 1,1 7,-8 8.15 0.07 

            78732:78125 [2 9 -7> 13.4 Sensipent 1199.59 756.60 1,0 6,-7 8,-9 8.84 0.41 

          262144:253125 [18 -4 -5> 60.6 Passion 1198.31 98.40 1,0 2,-5 2,4 9.77 1.69 

          393216:390625 [17 1 -8> 11.4 Würschmidt 1199.69 812.05 1,0 7,-8 3,-1 10.10 0.31 

          531441:524288 [-19 12 0> 23.4 Compton 100.05 15.13 12,0 19,0 28,-1 10.33 0.62 

        1600000:1594323 [9 -13 5> 6.2 Amity 1199.85 860.38 1,0 -2,5 -7,13 11.20 0.15 

        2109375:2097152 [-21 3 7> 10.1 Orson 1200.24 271.65 1,0 0,7 3,-3 11.41 0.24 

      TWO BONUS TEMPS.:           

   6115295232:6103515625 [23 6 -14> 4.2 Vishnu 599.97 71.15 2,0 4,-7 5,-3 17.67 0.05 

274877906944:274658203125 [38 -2 -15> 1.4 Luna 1199.98 193.196 1,0 4,-15 2,2 20.65 0.02 
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A similar notation scheme can be devised for any 2-dimensional temperament. The 

reader may find it useful or enjoyable to concoct such schemes using the horagrams 

here provided. 

  Table 1 provides data on all the 5-limit 2-dimensional temperaments for 

which horagrams are provided. The first column gives the ratio of the interval whose 

vanishing defines the temperament.xxxii The second column gives this interval in vector 

form, and the third column gives the interval’s untempered (JI) size in cents. The fourth 

column is the name used to label the horagram. The fifth and sixth columns give the 

period and generator, respectively. The next three columns show how the primes 2, 3, 

and 5 are approximated by combining an integer number of periods and an integer 

number of generators. For example, prime 5 in meantone is approximated by ascending 

4 periods and descending 4 generators, so the “mapping of 5” is given as “4, -4”. The 

second-to-last column gives the complexity of the temperament, a measure of the size 

of the portion of the five-limit Tenney lattice that is required to represent the entire 

temperament (the whole lattice isn’t needed since temperament introduces 

redundancy).xxxiii The last column gives the maximum damage incurred by the TOP 

tuning. 

 

Table 2 
Vanishing Intervals’ Ratios Horagram 

name 
TOP 
per. 

TOP 
gen. 

Mapp. 
of 2 

Mapp. 
of 3 

Mapp. 
of 5 

Mapp. 
of 7 

Cmplx. TOP 
Dmg. 

28:27, 49:48, 64:63, 256:243, 343:324,... Blacksmith 239.18 155.35 5,0 8,0 11,1 14,0 6.47 7.24 

36:35, 50:49, 126:125, 360:343, 648:625,.. Dimisept 298.53 197.08 4,0 7,-1 10,-1 12,-1 7.92 5.87 

36:35, 64:63, 81:80, 256:245, 729:700,... Dominant 1195.23 495.88 1,0 2,-1 4,-4 2,2 7.96 4.77 

36:35, 128:125, 225:224, 405:392, 729:686,... August 399.99 107.31 3,0 5,-1 7,0 9,-2 8.30 5.87 

50:49, 64:63, 225:224, 2048:2025,... Pajara 598.45 491.88 2,0 4,-1 3,2 4,2 10.40 3.11 

49:48, 81:80, 245:243, 1323:1280,... Semaphore 1203.67 252.48 1,0 2,-2 4,-8 3,-1 11.20 3.67 

81:80, 126:125, 225:224, 3136:3125,... Meantone 1201.70 504.13 1,0 2,-1 4,-4 7,-10 11.77 1.70 

50:49, 81:80, 405:392, 4000:3969,... Injera 600.89 507.28 2,0 4,-1 8,-4 9,-4 11.92 3.58 

49:48, 225:224, 525:512, 686:675,... Negrisept 1203.19 1078.35 1,0 -2,4 5,-3 1,2 12.12 3.19 

64:63, 126:125, 128:125, 4000:3969,... Augene 399.02 90.59 3,0 5,-1 7,0 8,2 12.13 2.94 

49:48, 126:125, 875:864, 1029:1000,... Keemun 1203.19 317.84 1,0 0,6 1,5 2,3 12.41 3.19 

81:80, 128:125, 648:625, 2048:2025,... Catler 99.81 75.22 12,0 19,0 28,0 33,1 12.84 3.56 

50:49, 245:243, 250:243, 2430:2401,... Hedgehog 598.45 436.13 2,0 1,3 1,5 2,5 13.19 3.11 

64:63, 245:243, 1728:1715, 2240:2187,... Superpyth 1197.60 708.17 1,0 1,1 -3,9 4,-2 14.43 2.40 

126:125, 245:243, 686:675, 4375:4374,... Sensisept 1198.39 755.23 1,0 6,-7 8,-9 11,-13 14.46 1.61 

50:49, 525:512, 1029:1024, 1875:1792,... Lemba 601.70 230.87 2,0 2,3 5,-1 6,-1 14.63 3.74 

64:63, 250:243, 875:864, 6144:6125,... Porcupine 1196.91 1034.59 1,0 -1,3 -2,5 8,-6 14.80 3.09 

81:80, 525:512, 875:864, 4375:4374,... Flattone 1202.54 507.14 1,0 2,-1 4,-4 -1,9 15.38 2.54 

225:224, 245:243, 875:864, 3125:3072,... Magic 1201.28 380.80 1,0 0,5 2,1 -1,12 15.54 1.28 

50:49, 875:864, 1728:1715, 3125:3024,... Doublewide 599.28 326.96 2,0 1,4 3,3 4,3 15.60 3.27 

49:48, 250:243, 4000:3969, 6125:5832,... Nautilus 1202.66 1119.69 1,0 -4,6 -7,10 0,3 15.62 3.48 

64:63, 686:675, 2401:2400, 6272:6075,... Beatles 1197.10 842.38 1,0 3,-2 -4,9 0,4 16.88 2.90 

81:80, 686:675, 1029:1000, 10976:10935,... Liese 1202.62 569.05 1,0 3,-3 8,-12 8,-11 17.49 2.62 

81:80, 1029:1024, 1728:1715, 8748:8575,... Cynder 1201.7 969.18 1,0 4,-3 12,-12 2,1 18.45 1.70 

225:224, 1728:1715, 2430:2401, 6144:6125,... Orwell 1199.53 271.49 1,0 0,7 3,-3 1,8 19.98 0.95 

225:224, 3125:3087, 4000:3969, 5120:5103,... Garibaldi 1200.76 702.64 1,0 1,1 7,-8 11,-14 20.29 0.91 

126:125, 1728:1715, 2401:2400, 31104:30625,... Myna 1198.83 888.94 1,0 9,-10 9,-9 8,-7 20.33 1.17 

225:224, 1029:1024, 2401:2400, 16875:16807,... Miracle 1200.63 116.72 1,0 1,6 3,-7 3,-2 21.10 0.63 

A BONUS TEMPERAMENT:          

2401:2400, 4375:4374, 250047:250000,... Ennealimmal 133.337 84.313 9,0 13,2 19,3 24,2 39.83 0.04 
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The “main sequence” of Table 1 comprises all possible five-limit 2-D cases where 

complexity/12 + damage/10 < 1. The “exotemperaments” have larger damage and lend 

themselves to special measures such as custom inharmonic timbres in order to aid 

harmoniousness. The “bonus temperaments” are more complex but have exceedingly 

small damage and sound like JI. 

Table 2 is analogous to Table 1 but deals with 2-dimensional temperaments 

of seven-limit JI. Much of the data was provided by Gene Ward Smith. This case, along 

with 11-limit and other scenarios, will be discussed more fully in Part 2. Since 7-limit JI 

is four-dimensional, two independent intervals must vanish in order for a 2-dimensional 

temperament to result. An infinite number of vanishing intervals can be derived from 

these two; only the simplest several are shown here. Other than the “bonus 

temperament,” Table 2 comprises all possible seven-limit 2-D cases where 

complexity/24 + damage/10 < 1. . . . TO BE CONTINUED IN PART 2 . . . 

 
 
i
 See Kyle Gann’s “An Introduction to Historical Tunings,” 

http://home.earthlink.net/~kgann/histune.html, which contains only a few minor errors. 
ii
 John Chalmers, Paul Hahn, Herman Miller, Manuel Op de Coul, Kees van Prooijen, Margo Schulter, Dan 

Stearns, and others have enriched this collaboration with their related and often parallel contributions. 

Crucial germinative interest has been provided by Carl Lumma, Joe Monzo, and Joseph Pehrson. 
iii
 For example, Joseph Pehrson has composed in the “Miracle” system (see 

http://www.soundclick.com/pro/?BandID=104245), Herman Miller in the “Porcupine,” “Lemba,” and other 

systems (see http://www.io.com/~hmiller/music/), and Gene Ward Smith in many systems 

(http://www.xenharmony.org). Though the overwhelming majority of my own public musical output so far 

has been on standard-tuned instruments, I have procured several microtonal instruments, played them on 

my own and with the free-improv group MAD DUXX in performances and recordings, and performed sets of 

alternatively-tuned compositions at two American Festival of Microtonal Music concerts – the first of which 

was reviewed in Gann, Kyle, June 8, 1999. “Micro Breweries”, The Village Voice 

(http://www.villagevoice.com/issues/9922/gann.php) and the second of which had an excerpt broadcast on 

WNYC-FM on 5/18/01 and 5/31/03 (http://www.wnyc.org/shows/newsounds/episodes/05312003). “Pajara”, 

“Porcupine”, and “Superpythagorean” were among the systems described in this paper which were 

explored in these compositions. 
iv
 Though we had worked out many of its details before his appearance in the community, special thanks 

goes to Gene Ward Smith for applying modern mathematics (namely, the field of Grassmann, or exterior, or 

multilinear, algebra) to this subject, placing it on a firmer foundation and allowing for many problems to be 

solved and new results to be obtained. 
v
 More precisely, the frequency ratio of a given interval is the inverse of its string-length or pipe-length 

ratio. This is important to keep in mind to avoid misconstruing ancient tuning specifications involving three 

or more notes.  
vi
 There are many ways of understanding this concordance. 

The human voice, bowed strings, wind and brass instruments normally produce sounds whose frequency 

content, or spectrum, consists of exact integer multiples of a fundamental frequency. See Brown, Judith C. 

1996. "Frequency ratios of spectral components of musical sounds" J. Acoust. Soc. Am. 99, 1210-1218. 

Such spectra are referred to as harmonic. Plucked or hammered strings deviate only slightly from this 

pattern. 

Many of the explanations of the concordance of simple-integer ratios proceed from these facts; see 

Sethares, W. A. 2005. Tuning, Timbre, Spectrum, Scale. Springer-Verlag, London, 2
nd

 edition. These 

explanations, whose history goes back to Helmholtz, typically consider the psychoacoustic interactions 

among the spectral components when different notes are combined. Concordance then becomes a negative 

phenomenon which depends on the absence of disturbing interactions. These theories predict that the 

relative concordance of simple-integer ratios disappears when inharmonic instrument spectra – such as 

those found in Indonesian metallophones, or specially synthesized electronically – are used.  

http://home.earthlink.net/~kgann/histune.html
http://www.soundclick.com/pro/?BandID=104245
http://www.io.com/~hmiller/music/
http://www.xenharmony.org/
http://www.villagevoice.com/issues/9922/gann.php
http://www.wnyc.org/shows/newsounds/episodes/05312003
http://www.wellesley.edu/Physics/brown/pubs/freqRatV99P1210-P1218.djvu
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Other explanations begin from the brain’s natural propensity to treat harmonic spectra as perceptual 

gestalts, hearing them as having single rather than multiple pitches. See Parncutt, R. 1989. Harmony: A 
Psychoacoustical Approach.. Springer-Verlag, Berlin. These explanations extend this observation beyond 

the level of single instrument sounds to the level of harmony, i.e., the combination of notes from several 

instruments. Concordance here is a positive phenomenon which reflects the extent to which combinations 

of notes can elicit the same gestalt phenomena that apply to the spectra of single notes. The history of 

such explanations goes back to Rameau. Recent neurological research points to strong evidence for the 

latter theories and the inadequacy of the Helmholtz-Sethares approach. See Tramo, MJ, Cariani, PA, 

Delgutte, B, Braida, LD. 2001. “Neurobiological Foundations for the Theory of Harmony in Western Tonal 

Music.” Annals, New York Academy of Sciences, vol 92, pp. 92-116 

(http://homepage.mac.com/cariani/CarianiWebsite/TramoCarianiNYAS2001.pdf).  
vii

 Since the late 15
th
 century, all the thirds in the diatonic scale (C-E, D-F, E-G, F-A, G-B, A-C, and 

B-D), and most of the fifths (C-G, D-A, E-B, F-C, G-D, and A-E), have been included among its 

consonant intervals. 
viii

 Cents are a common measure of interval size; a ratio n/d has size in cents given by 1200·log2(n/d). 
ix
 Nevertheless, a couple of the systems in this paper – Helmholtz and Compton – were offered as this kind 

of solution, avoiding the significant mistunings of meantone temperament, but simplified through what has 

been called “microtemperament”, keeping the overall number of pitches manageable. 
x
 Where enharmonic equivalence – the identification of G＃ with A♭, D＃ with E♭, C＃ with D♭, etc. – 

becomes an explicit and important assumption in the music. See Mathieu, W.A. Harmonic Experience. Inner 

Traditions International, Rochester VM, 1997; also see Kelley, Robert. “Charting Enharmonicism on the Just 

Intonation Tonnetz: A Practical Approach to Neo-Riemannian Analysis 

(http://garnet.acns.fsu.edu/~rtk1218/justtonnetz.pdf). 
xi
 Or F major. 

xii
 See the article on Miracle tuning and the decimal keyboard by George Secor in this journal 

(Xenharmonikôn 18). 
xiii

 One may also begin with equal temperaments and combine them into tuning systems of higher dimension, 

ultimately leading to JI. This is Graham Breed’s ‘melodic’ approach and is the algebraic dual of that 

described in this paper. 
xiv

 E.g., 45 factors as 3*3*5; 49 factors as 7*7; so the largest prime factor appearing in 49/45 is 7. 
xv

 A vector denoted this way, employing a right-bracket and thus known as a “ket”, is a contravariant 

vector, which is the usual type of vector. See http://mathworld.wolfram.com/ContravariantVector.html. 

Since the coefficients are restricted to be integers, and not allowed to be other rational or real numbers, 

etc., we should also add that it is a member of an abelian group or Z-module. See 

http://mathworld.wolfram.com/Module.html. Thanks to Gene Ward Smith for this note. 
xvi

 A covector, or covariant vector, denoted this way, with a left-bracket, is known as a “bra”. Strictly 

speaking, a covariant vector is not a true vector but is a linear functional on a vector space, mapping each 

vector to a real number. See http://mathworld.wolfram.com/One-Form.html and 

http://mathworld.wolfram.com/LinearFunctional.html. The particular bra above operates (via the bracket 

product, or equivalently via the pitch-contour construction) on vectors in the Pythagorean lattice and 

returns their pitch-differences in cents. 
xvii

 See the article on Sagittal notation by George Secor and Dave Keenan in this journal 

(Xenharmonikôn 18). 
xviii

 Prime two is often ignored, because of octave-equivalence, leading to a 2-dimensional lattice. Doing so 

at this stage leads to mathematical complications when certain temperaments are considered, makes 

modeling of concordance via lattice proximity more difficult, and does disservice to musicians who don’t 

wish to assume octave-equivalence. Hence, we’ll leave prime two in as an autonomous dimension; thus so-

called “linear temperaments” will be considered 2-dimensional, etc. 
xix

 Tenney, James. "John Cage and the Theory of Harmony", Soundings vol. 13, 1984, pp. 55-83. 
xx

 The absolute value of a number n, denoted |n|, is equal to n if n is positive, or –n if n is negative. 

The absolute value is never a negative number. 
xxi

 Harmonic entropy is a discordance measure I developed based on a minimum of assumptions and 

parameters. It’s described in the 2
nd

 (2005) edition of Sethares, Bill, Tuning, Timbre, Spectrum, Scale.  

http://homepage.mac.com/cariani/CarianiWebsite/TramoCarianiNYAS2001.pdf
http://www.innertraditions.com/titles/harexp.htm
http://garnet.acns.fsu.edu/~rtk1218/justtonnetz.pdf
http://mathworld.wolfram.com/ContravariantVector.html
http://mathworld.wolfram.com/Module.html
http://mathworld.wolfram.com/One-Form.html
http://mathworld.wolfram.com/LinearFunctional.html
http://www.music.mcgill.ca/~gems/tenney/theory.html
http://www.music.mcgill.ca/~gems/tenney/theory.html
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Springer-Verlag, London. However it’s closer in spirit to the Tramo, op. cit. view of consonance than to the 

Sethares view. It’s also described and discussed in the internet forum 

http://groups.yahoo.com/group/harmonic_entropy/. Harmonic entropy can show surprising affinities with 

Tenney’s Harmonic Distance (HD) function, log(n·d), at the simple ratios n/d, but is continuous and equally 

applicable to irrational intervals. 
xxii

This paper deals with regular temperament, in which each prime’s tuning is altered in the same way 

regardless of where it appears in the tuning system. Irregular temperaments can usually be viewed as 

variations of these and are not essentially different in terms of algebraic or group-theoretic structure. Thus 

Bach will be mentioned in connection with 12-equal though his actual tuning was more likely an unequal but 

closed 12-tone “well-temperament”. 
xxiii

 Each ratio in this list is obtained from its predecessor by dividing by 81/80. 
xxiv

 I posted this simple but apparently original idea on Jan. 2, 2004 to 

http://groups.yahoo.com/group/tuning-math/message/8355. 
xxv

 The reader may obtain 0.02 when performing this calculation; this is a result of cumulative rounding 

errors in the calculations above. 
xxvi

 The proof follows from the prime factorization theorem. For all primes p, the maximum damage being T 

implies that 

mistuning(p)/log(p) <= T 

so 

mistuning(p) <= T·log(p) 

for all the primes p. If the factors in a given ratio are 2^a 3^b 5^c . . . (each exponent may either be 

positive or negative), then the mistuning of the chosen ratio cannot be greater than 

T·(|a|·log(2) + |b|·log(3) + |c|·log(5) . . .) 

since the errors in the primes that make up the chosen ratio, at worst, add up without cancellation to the 

error in the chosen ratio. The HD of the ratio, meanwhile, is exactly 

(|a|·log(2) + |b|·log(3) + |c|·log(5) . . .) 

So the damage done to the ratio cannot be greater than the second-to-last expression divided by the last 

expression, i.e., T. 
xxvii

 Minimizing maximum “damage” is not the only reasonable criterion for optimally tuning a temperament. 

One might wish to minimize the maximum discordance over some specified set of ‘concordant’ intervals. 

This would put less emphasis on accurately tuning the simplest ratios and more on accurately tuning some 

more complex ones. And to be fair, increase in discordance is only one kind of audible damage that can be 

done to a frequency ratio by mistuning it. Some other kinds are increasing beat-rate and "loss of identity", 

where for example a medium complexity ratio, such as 9/7 or 11/8, loses its special quality and becomes 

just another badly tuned version of a simpler nearby ratio. Moderately complex ratios are more sensitive to 

these kinds of damage than simple ratios and so Tenney optimization may not always be appropriate, 

depending on the desired musical effects. Thanks to Dave Keenan for this note. 
xxviii

 Though any sufficiently small tempering of this prime would leave the optimality intact, leaving it just 

minimizes the damage to intervals that do involve this prime. 
xxix

 The reader may obtain -0.02 when performing this calculation; this is a result of cumulative rounding 

errors in the calculations above. 
xxx

 In all cases, it minimizes the maximum inverse-HD-weighted error over all the intervals in the infinite 

lattice of ratios (or equivalently, any sufficient subset thereof, for example a set of ‘consonances’). The 

calculation for equal temperaments is simple and is illustrated at http://groups.yahoo.com/group/tuning-

math/message/8512. The proof in the footnote above applies to all forms of TOP. Thus TOP puts explicit 

importance on accurately approximating the simplest ratios but does not disregard the effect on the more 

complex ratios as some other optimizations do. 
xxxi

 As a nod to Erv Wilson’s Golden Horagrams, I distinguish the DESs where the step sizes are in a 

ratio smaller than the golden ratio from those where the ratio of the step sizes is larger than the golden 

ratio. The font in which the DES’s cardinality is printed is larger and bolder in the former case than in 

the latter. 
xxxii

 All powers of this ratio will vanish as well; only the simplest vanishing ratio is shown. 
xxxiii

 In the 5-limit case, this is proportional to the Harmonic Distance of the vanishing interval. 

http://groups.yahoo.com/group/harmonic_entropy/
http://groups.yahoo.com/group/tuning-math/message/8355
http://groups.yahoo.com/group/tuning-math/message/8512
http://groups.yahoo.com/group/tuning-math/message/8512
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Table 3 -- Approximations of concordant JI intervals in TOP-tuned temperaments. Horagrams' figures contain rounding error; these are more accurate.

JI Interval: ratio: 9/8 ratio: 8/7 ratio: 7/6 ratio: 6/5 ratio: 5/4 ratio: 9/7 ratio: 4/3 ratio: 7/5 ratio: 3/2 ratio: 8/5 ratio: 5/3 ratio: 7/4 ratio: 9/5 ratio: 2/1

¢: 203.91 ¢: 231.17 ¢: 266.87 ¢: 315.64 ¢: 386.31 ¢: 435.08 ¢: 498.04 ¢: 582.51 ¢: 701.96 ¢: 813.69 ¢: 884.36 ¢: 968.83 ¢: 1017.60 ¢: 1200.00

devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd devia- tmpr'd

tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl tion intervl

Horagram

TOP Amity 0.9 204.83 #N/A #N/A #N/A #N/A 0.4 316.08 0.0 386.27 #N/A #N/A -0.5 497.51 #N/A #N/A 0.4 702.34 -0.1 813.59 -0.6 883.78 #N/A #N/A 0.8 1018.42 -0.1 1199.85

TOP Augene 13.9 217.83 -13.3 217.83 4.9 271.78 -7.2 308.43 12.7 399.02 0.6 435.67 -8.4 489.61 -2.3 580.21 5.5 707.45 -15.6 798.04 4.3 888.63 10.4 979.23 -1.7 1015.87 -2.9 1197.06

TOP Augmented 8.8 212.73 #N/A #N/A #N/A #N/A -9.8 305.87 12.7 399.02 #N/A #N/A -5.9 492.17 #N/A #N/A 2.9 704.90 -15.6 798.04 6.8 891.19 #N/A #N/A -6.8 1010.77 -2.9 1197.06

TOP August -18.5 185.37 -16.6 214.62 25.8 292.68 -23.0 292.68 13.7 399.99 -35.1 399.99 9.3 507.30 2.8 585.36 -9.3 692.67 -13.7 799.98 22.9 907.30 16.5 985.35 -32.2 985.35 0.0 1199.98

TOP Beatles 17.9 221.78 -9.4 221.78 -1.0 265.89 -5.0 310.61 12.5 398.83 8.5 443.55 -10.4 487.66 -6.0 576.50 7.5 709.44 -15.4 798.27 2.1 886.49 6.5 975.33 2.5 1020.05 -2.9 1197.10

TOP Blacksmith 35.3 239.18 8.0 239.18 -27.7 239.18 7.4 323.01 8.2 394.53 43.3 478.36 -19.7 478.36 -20.3 562.19 15.6 717.54 -12.3 801.37 -11.5 872.88 -12.1 956.71 22.9 1040.55 -4.1 1195.89

TOP Blackwood 35.0 238.87 #N/A #N/A #N/A #N/A 3.3 318.96 11.3 397.65 #N/A #N/A -20.3 477.73 #N/A #N/A 14.6 716.60 -17.0 796.69 -9.0 875.38 #N/A #N/A 18.0 1035.56 -5.7 1194.33

TOP Bug -44.9 158.97 #N/A #N/A #N/A #N/A -55.4 260.26 32.9 419.23 #N/A #N/A 22.5 520.51 #N/A #N/A -22.5 679.49 -32.9 780.77 55.4 939.74 #N/A #N/A -77.9 939.74 0.0 1200.00

TOP Catler -4.3 199.61 -7.0 224.20 8.0 274.83 -16.2 299.42 12.9 399.22 -11.3 423.81 1.0 499.03 -8.3 574.25 -3.3 698.64 -15.2 798.45 13.9 898.26 4.7 973.48 -19.5 998.06 -2.3 1197.67

TOP Compton -3.8 200.10 #N/A #N/A #N/A #N/A -0.4 315.28 -1.2 385.08 #N/A #N/A 2.2 500.26 #N/A #N/A -1.6 700.36 1.9 815.54 1.0 885.34 #N/A #N/A -2.0 1015.64 0.6 1200.62

TOP Cynder -10.5 193.43 1.3 232.52 4.7 271.61 -4.9 310.70 0.5 386.86 -9.1 425.95 6.1 504.13 -0.2 582.32 -4.4 697.56 1.2 814.84 6.6 890.99 0.4 969.18 -9.3 1008.27 1.7 1201.70

TOP Dicot 1.3 205.21 #N/A #N/A #N/A #N/A 37.6 353.22 -33.1 353.22 #N/A #N/A 3.2 501.22 #N/A #N/A 4.5 706.43 40.8 854.44 -29.9 854.44 #N/A #N/A 42.1 1059.65 7.7 1207.66

TOP Dimipent -0.6 203.34 #N/A #N/A #N/A #N/A -16.5 299.16 14.5 400.83 #N/A #N/A -1.4 496.65 #N/A #N/A -2.0 699.99 -17.9 795.81 13.1 897.48 #N/A #N/A -18.4 999.15 -3.4 1196.64

TOP Dimisept -1.0 202.91 -34.1 197.08 31.7 298.53 -17.1 298.53 13.7 399.99 -35.1 399.99 -2.4 495.61 14.6 597.06 -3.4 698.52 -19.5 794.14 11.2 895.60 28.2 997.05 -20.5 997.05 -5.9 1194.13

TOP Dominant -0.4 203.47 -27.7 203.47 25.5 292.41 -23.2 292.41 20.6 406.93 -28.2 406.93 -2.2 495.88 2.3 584.83 -2.6 699.35 -25.4 788.30 18.5 902.81 22.9 991.76 -25.8 991.76 -4.8 1195.23

TOP Doublewide 14.7 218.61 -13.5 217.66 5.4 272.31 11.3 326.96 -4.7 381.62 1.2 436.27 -8.1 489.97 16.8 599.28 6.6 708.58 3.3 816.94 -12.8 871.59 12.1 980.89 17.9 1035.55 -1.4 1198.55

TOP Ennealimmal 0.0 203.92 0.21 231.39 -0.20 266.67 0.06 315.70 -0.04 386.28 0.22 435.30 0.02 498.06 -0.14 582.37 0.02 701.98 0.07 813.76 -0.02 884.34 -0.17 968.65 0.08 1017.68 0.04 1200.04

TOP Father 87.2 291.10 #N/A #N/A #N/A #N/A -24.5 291.10 61.1 447.39 #N/A #N/A -50.7 447.39 #N/A #N/A 36.5 738.48 -75.2 738.48 10.4 894.77 #N/A #N/A 12.0 1029.58 -14.1 1185.87

TOP Flattone -15.6 188.26 14.7 245.90 -5.6 261.23 3.2 318.88 -9.8 376.52 -0.9 434.16 9.1 507.14 -2.4 580.11 -6.6 695.40 12.3 826.02 -0.7 883.66 -12.2 956.63 -3.3 1014.28 2.5 1202.54

TOP Garibaldi 0.6 204.52 -0.3 230.89 0.4 267.23 4.3 319.97 -3.6 382.67 0.3 435.42 0.1 498.12 4.7 587.19 0.7 702.64 4.4 818.09 -3.6 880.79 1.0 969.87 5.0 1022.61 0.8 1200.76

TOP Hanson 0.0 203.96 #N/A #N/A #N/A #N/A 1.4 317.07 -1.3 385.06 #N/A #N/A 0.1 498.17 #N/A #N/A 0.2 702.13 1.5 815.24 -1.1 883.22 #N/A #N/A 1.6 1019.19 0.3 1200.29

TOP Hedgehog 19.1 223.00 -18.0 213.13 6.9 273.81 9.0 324.63 -1.0 385.31 1.0 436.13 -11.1 486.95 15.9 598.45 8.0 709.95 -2.1 811.58 -12.1 872.26 14.9 983.76 17.0 1034.58 -3.1 1196.89

TOP Helmholtz -0.4 203.51 #N/A #N/A #N/A #N/A 0.1 315.75 -0.3 386.03 #N/A #N/A 0.2 498.28 #N/A #N/A -0.2 701.79 0.3 814.03 0.0 884.31 #N/A #N/A -0.1 1017.54 0.1 1200.07

TOP Injera -16.7 187.22 -4.7 226.45 14.0 280.83 4.4 320.06 -11.9 374.44 -21.4 413.67 9.2 507.28 18.4 600.89 -7.5 694.50 13.7 827.34 -2.6 881.72 6.5 975.33 -3.0 1014.56 1.8 1201.78

TOP Keemun 0.5 204.45 18.5 249.68 -17.2 249.68 2.2 317.83 -0.3 385.98 19.1 454.14 1.3 499.37 -15.0 567.52 1.9 703.82 3.5 817.20 1.0 885.35 -15.3 953.50 4.1 1021.65 3.2 1203.19

TOP Lemba -22.1 181.85 -0.3 230.87 13.0 279.90 6.2 321.80 -15.5 370.83 -22.4 412.72 12.7 510.78 19.2 601.70 -9.3 692.62 18.9 832.58 -2.8 881.60 3.7 972.53 -3.2 1014.42 3.4 1203.40

TOP Liese -10.3 193.58 15.2 246.42 -8.8 258.11 -4.7 310.94 0.8 387.16 4.9 440.00 6.5 504.52 -13.5 569.05 -3.9 698.10 1.8 815.47 7.3 891.68 -12.6 956.21 -8.6 1009.05 2.6 1202.62

TOP Luna 0.11 204.02 #N/A #N/A #N/A #N/A -0.03 315.61 0.08 386.39 #N/A #N/A -0.07 497.98 #N/A #N/A 0.05 702.00 -0.10 813.59 0.01 884.37 #N/A #N/A 0.02 1017.61 -0.02 1199.98

TOP Magic* 0.2 204.13 4.4 235.56 -3.9 263.02 6.3 321.91 -5.5 380.80 4.6 439.69 0.5 498.57 2.4 584.92 0.7 702.70 6.8 820.48 -5.0 879.37 -3.1 965.72 7.0 1024.61 1.3 1201.28

TOP Mavila -40.4 163.51 #N/A #N/A #N/A #N/A 11.4 327.02 -28.3 358.01 #N/A #N/A 23.5 521.52 #N/A #N/A -16.9 685.03 34.8 848.54 -4.8 879.53 #N/A #N/A -5.6 1012.04 6.5 1206.55

TOP Meantone* -10.5 193.43 3.4 234.55 2.7 269.59 -4.9 310.70 0.5 386.86 -7.1 427.98 6.1 504.13 -2.2 580.29 -4.4 697.56 1.2 814.84 6.6 890.99 -1.7 967.15 -9.3 1008.27 1.7 1201.70

TOP Miracle -3.9 200.02 2.3 233.44 0.0 266.87 1.1 316.74 -2.7 383.59 -1.6 433.46 2.3 500.31 1.1 583.60 -1.6 700.32 3.4 817.04 -0.5 883.89 -1.6 967.19 -0.5 1017.06 0.6 1200.63

TOP Myna -0.2 203.71 -2.8 228.41 2.3 269.15 -5.7 309.89 5.1 391.38 -3.0 432.12 -0.5 497.56 -3.5 579.04 -0.7 701.27 -6.2 807.45 4.6 888.94 1.6 970.42 -6.4 1011.16 -1.2 1198.83

TOP Nautilus 3.1 206.96 17.7 248.92 -17.9 248.92 16.3 331.90 -13.4 372.91 20.8 455.89 -0.2 497.85 -1.7 580.82 2.9 704.81 16.1 829.75 -13.6 870.76 -15.1 953.74 19.1 1036.71 2.7 1202.66

TOP Negripent -11.2 192.66 #N/A #N/A #N/A #N/A 3.2 318.81 -7.9 378.44 #N/A #N/A 6.5 504.58 #N/A #N/A -4.7 697.24 9.7 823.39 -1.3 883.02 #N/A #N/A -1.5 1016.05 1.8 1201.82

TOP Negrisept 0.5 204.45 18.5 249.68 -17.2 249.68 13.7 329.29 -11.8 374.53 19.1 454.14 1.3 499.37 -3.5 578.98 1.9 703.82 15.0 828.66 -10.5 873.89 -15.3 953.50 15.5 1033.11 3.2 1203.19

TOP Orson -1.5 202.43 #N/A #N/A #N/A #N/A 0.4 316.06 -1.0 385.28 #N/A #N/A 0.9 498.90 #N/A #N/A -0.6 701.34 1.3 814.96 -0.2 884.18 #N/A #N/A -0.2 1017.39 0.2 1200.24

TOP Orwell -1.6 202.31 -4.1 227.12 4.6 271.49 0.2 315.87 -1.3 385.05 -5.7 429.43 0.6 498.61 4.9 587.36 -1.0 700.92 0.8 814.48 -0.7 883.66 3.6 972.42 -0.8 1016.79 -0.5 1199.53

TOP Pajara 9.2 213.13 -18.0 213.13 11.9 278.75 4.1 319.70 -1.0 385.31 -8.8 426.27 -6.2 491.88 15.9 598.45 3.1 705.01 -2.1 811.58 -7.2 877.19 14.9 983.76 7.1 1024.71 -3.1 1196.89

TOP Passion 10.4 214.31 #N/A #N/A #N/A #N/A -2.9 312.71 7.3 393.60 #N/A #N/A -6.0 492.00 #N/A #N/A 4.4 706.31 -9.0 804.71 1.2 885.60 #N/A #N/A 1.4 1019.03 -1.7 1198.31

TOP Porcupine* 19.1 223.00 -8.2 223.00 -2.9 263.95 9.0 324.64 -1.0 385.32 10.9 446.00 -11.1 486.95 6.1 588.59 8.0 709.95 -2.1 811.59 -12.1 872.27 5.1 973.91 17.0 1034.59 -3.1 1196.91

TOP Ripple -20.5 183.40 #N/A #N/A #N/A #N/A -9.7 305.98 1.1 387.38 #N/A #N/A 11.9 509.96 #N/A #N/A -8.6 693.36 2.3 815.94 13.0 897.35 #N/A #N/A -18.3 999.34 3.3 1203.32

TOP Semaphore -10.2 193.75 21.3 252.48 -14.4 252.48 -4.4 311.21 1.2 387.49 11.1 446.23 6.9 504.96 -18.8 563.69 -3.2 698.71 2.5 816.17 8.1 892.46 -17.6 951.19 -7.7 1009.92 3.7 1203.67

TOP Sensipent -0.1 203.84 #N/A #N/A #N/A #N/A -2.0 313.62 1.8 388.09 #N/A #N/A -0.2 497.87 #N/A #N/A -0.2 701.71 -2.2 811.49 1.6 885.97 #N/A #N/A -2.3 1015.33 -0.4 1199.59

TOP Sensisept 8.4 212.30 -0.3 230.86 -4.7 262.18 -3.6 312.07 7.0 393.27 8.1 443.16 -5.0 493.05 -8.3 574.25 3.4 705.34 -8.6 805.12 2.0 886.32 -1.3 967.53 -0.2 1017.41 -1.6 1198.39

TOP Srutal 5.5 209.40 #N/A #N/A #N/A #N/A -1.5 314.10 3.8 390.16 #N/A #N/A -3.2 494.86 #N/A #N/A 2.3 704.25 -4.7 808.95 0.7 885.01 #N/A #N/A 0.8 1018.35 -0.9 1199.11

TOP Superpyth* 14.8 218.74 ### 218.74 3.8 270.69 7.0 322.63 -0.8 385.54 2.4 437.48 -8.6 489.43 10.8 593.31 6.2 708.17 -1.6 812.06 -9.4 874.97 10.0 978.85 13.2 1030.80 -2.4 1197.60

TOP Tetracot 6.0 209.89 #N/A #N/A #N/A #N/A 2.8 318.46 -0.3 386.00 #N/A #N/A -3.5 494.57 #N/A #N/A 2.5 704.46 -0.7 813.03 -3.8 880.57 #N/A #N/A 5.3 1022.92 -1.0 1199.03

TOP Vishnu -0.01 203.90 #N/A #N/A #N/A #N/A -0.25 315.39 0.22 386.54 #N/A #N/A -0.02 498.02 #N/A #N/A -0.03 701.92 -0.27 813.41 0.20 884.56 #N/A #N/A -0.28 1017.31 -0.05 1199.95

TOP Würschmidt -0.1 203.86 #N/A #N/A #N/A #N/A -1.5 314.13 1.3 387.64 #N/A #N/A -0.1 497.92 #N/A #N/A -0.2 701.77 -1.6 812.05 1.2 885.56 #N/A #N/A -1.7 1015.90 -0.3 1199.69

*figures in italics should be ignored in 5-limit context

(cents) (cents) (cents) (cents) (cents) (cents) (cents) (cents) (cents) (cents)(cents) (cents) (cents) (cents)
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