________________________________________________________________________ Date: Mon, 4 Oct 1999. Subject: JI pentatonic, "diatonic", and decatonic scales as ... blocks These three basic scales, identified in my paper as the melodic bases for 3-, 5-, and 7-limit harmony, respectively, have JI representations that come out as Fokker periodicity blocks when the typical "chromatic" interval implied by the scales is used as a unison vector. Interestingly, all these periodicity blocks are of the "most natural" type catalogued by Kees van Prooijen (he skipped the 3-limit ones but they're trivial -- apparantly not enough so to satisfy Carl?) In the 3-limit pentatonic case, modulating the scale by a single ratio of 3 simply moves one note by 256:243. Using this as the unison vector (only one is needed since octave-equivalent 3-limit space is one-dimensional), we get the following periodicity block: ratios for major 1/1-------3/2-------9/8------27/16-----81/64 ratios for minor 32/27-----16/9-------4/3-------1/1-------3/2 Interestingly, as I was writing this, Carl posted something about 1-D periodicity blocks, to which this may relate. In the 5-limit diatonic case, 81:80 is already assumed as a unison vector, and the chromatic interval by which one note moves when modulating by a ratio of 3 is 25:24. Using these as the unison vectors, the resulting periodicity block is: ratios for major 5/3-------5/4------15/8 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 4/3-------1/1-------3/2-------9/8 or 10/9-------5/3-------5/4------15/8 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 4/3-------1/1-------3/2 or 100/81-----50/27 \ / \ \ / \ \ / \ \ / \ 40/27-----10/9-------5/3 \ / \ \ / \ \ / \ \ / \ 4/3--------1/1 ratios for minor 1/1-------3/2-------9/8 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 8/5-------6/5-------9/5------27/20 or 4/3-------1/1-------3/2-------9/8 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 8/5-------6/5-------9/5 or 40/27-----10/9 \ / \ \ / \ \ / \ \ / \ 16/9-------4/3-------1/1 \ / \ \ / \ \ / \ \ / \ 8/5--------6/5 In the 7-limit decatonic case, 64:63 and 50:49 are already assumed as unison vectors. If you are unfamiliar with decatonic scales, see my paper at: http://www-math.cudenver.edu/~jstarret/22ALL.pdf When modulating by a 3-limit ratio, two notes move by a 48:49. Using these as the unison vectors, the resulting periodicity block is: ratios for symmetrical major 5/4------15/8 7/4------21/16 ,'/:\`. ,'/:\`. ,'/:\`. ,'/:\`. 10/7-/-:-\15/14/-:-\45/28 or 1/1-/-:-\-3/2-/-:-\-9/8 : / 7/4------21/16\ : : /49/40----147/80\ : :/,' `.\:/,' `.\: :/,' `.\:/,' `.\: 1/1-------3/2-------9/8 7/5------21/20-----63/40 or 16/9-------4/3-------1/1 80/63-----40/21-----10/7 :\`. ,'/:\`. ,'/: :\`. ,'/:\`. ,'/: : \32/21/-:-\-8/7 / : : 160/147-:-\80/49/ : 56/45-----28/15------7/5 or 16/9-------4/3-------1/1 `.\:/,' `.\:/,' `.\:/,' `.\:/,' 16/15------8/5 32/21------8/7 or 5/4 7/4 .'/:\`. .'/:\`. 40/21-----10/7-/-:-\15/14 4/3-------1/1-/---\-3/2 :\`. ,'/: / 7/4 \ : :\`. ,'/: /49/40\ : : \80/49/ :/,' `.\: or : \ 8/7 / :/.' `.\: 4/3-------1/1-------3/2 28/15------7/5------21/20 `.\:/,' `.\:/,' 8/7 8/5 ratios for symmetrical minor 4/3-------1/1 40/21-----10/7 ,'/:\`. ,'/:\`. ,'/:\`. ,'/:\`. 32/21/-:-\-8/7-/-:-\12/7 or 160/147/-:-\80/49/-:-\60/49 : /28/15------7/5 \ : : / 4/3-----/-1/1 \ : :/,' `.\:/,' `.\: :/,' `.\:/,' `.\: 16/15------8/5-------6/5 32/21------8/7------12/7 or 40/21-----10/7------15/14 4/3-------1/1-------3/2 :\`. ,'/:\`. ,'/: :\`. ,'/:\`. ,'/: : \80/49/-:-\60/49/ : : \ 8/7-/-:-\12/7 / : 4/3-------1/1-------3/2 or 28/15------7/5------21/20 `.\:/,' `.\:/,' `.\:/,' `.\:/,' 8/7------12/7 8/5-------6/5 or 21/16 15/8 .'/:\`. .'/:\`. 1/1-------3/2-/-:-\-9/8 10/7------15/14/---\45/28 :\`. ,'/: 147/80\ : :\`. ,'/: /21/16\ : : \12/7 / :/,' `.\: or : \60/49/ :/.' `.\: 7/5------21/20-----63/40 1/1-------3/2-------9/8 `.\:/,' `.\:/,' 6/5 12/7 I don't think the pentachordal decatonic scales can be thought of as periodicity blocks, but I could be wrong . . .